LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Intermediate-calcium based cementitious materials prepared by MSWI fly ash and other solid wastes: hydration characteristics and heavy metals solidification behavior.

Photo from wikipedia

Municipal solid waste incineration (MSWI) fly ash is a by-product of garbage incineration power generation, and its disposal is currently a world problem because it contains over standard heavy metals.… Click to show full abstract

Municipal solid waste incineration (MSWI) fly ash is a by-product of garbage incineration power generation, and its disposal is currently a world problem because it contains over standard heavy metals. This research aims to solidify the heavy metals in MSWI fly ash and make it to be utilizable construction materials under the guidance of intermediate-calcium cementitious materials (ICCM), and meanwhile figure out the solidification and hydration mechanism. The hydration characteristics of ICCM were characterized by XRD, FTIR, 29Si MAS-NMR and SEM techniques, and the environmental properties are investigated by TCLP and EPMA. The results indicate that the optimal ratio of (CaO + MgO)/(SiO2 + Al2O3) for ICCM is at the range of 0.76-0.88. The compressive strengths of ICCM reach the 42.5R normal Portland cement level, and the leaching concentrations of heavy metals meet the Chinese integrated wastewater discharge standard GB 8978-1996. As predominant hydration products, ettringite, hydrocalumite and amorphous C-S-H gel are principally responsible for the strength development of ICCM, and the (Ca + Mg)/(Si + Al) ratio at 0.88 has the best polymerized structure. The heavy metals are well solidified through combining with the C-S-H gel or absorbed in the hydration pastes. This paper provides an effective solution to use the MSWI fly ash in building material.

Keywords: heavy metals; intermediate calcium; cementitious materials; mswi fly; hydration; fly ash

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.