LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments.

Photo from archive.org

The reduced graphene oxide (rGO) supported nano zero-valent iron (nZVI) (nZVI-rGO) was synthesized successfully and applied in the several oxic environments to remove trichloroethylene (TCE). The nZVI-rGO had a better… Click to show full abstract

The reduced graphene oxide (rGO) supported nano zero-valent iron (nZVI) (nZVI-rGO) was synthesized successfully and applied in the several oxic environments to remove trichloroethylene (TCE). The nZVI-rGO had a better catalytic performance than bare nZVI for the TCE removal. Both aggregation of nZVI and agglomeration of rGO were in part prevented by loading the nZVI nanoparticles on the rGO sheet. Among all the oxic environments, the better removal of TCE was followed as the order of PMS > SPS > H2O2. Chemical scavenger tests were carried out to identify the reactive oxygen species (ROSs) generated in the removal of TCE, showing that in PMS and SPS systems, SO4- and HO were main radicals responsible for TCE removal, while HO and O2- were main radicals in H2O2 system. The possible mechanisms were proposed with nZVI-rGO under several oxic environments. The recyclability of nZVI-rGO, dechlorination and mineralization of TCE were investigated. These fundamental data confirmed the effectiveness of nZVI-rGO to remove TCE and could help selecting the suitable oxidants to use with nZVI-rGO in the actual field groundwater remediation.

Keywords: rgo supported; several oxic; nzvi rgo; tce; rgo; oxic environments

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.