A novel and highly efficient photocatalyst of Cd0.5Zn0.5S@ZIF-8 nanocomposite has been developed by a facile self-assembly strategy. This is the first report on the application of CdxZn1-xS and metal-organic framework… Click to show full abstract
A novel and highly efficient photocatalyst of Cd0.5Zn0.5S@ZIF-8 nanocomposite has been developed by a facile self-assembly strategy. This is the first report on the application of CdxZn1-xS and metal-organic framework (MOF) nanocomposite as photocatalysts for the reduction of Cr(VI). The resulting Cd0.5Zn0.5S@ZIF-8 exhibited higher photocatalytic activity than that of pristine Cd0.5Zn0.5S and ZIF-8. Particularly, the CZS@Z60 composite with 60 wt% of ZIF-8 exhibited a photocatalytic activity that is about 1.6 times as high as that of Cd0.5Zn0.5S. The dominant reason for the improved photocatalytic reduction potential is proved to be the newly-formed interfacial SZn bonds that firmly connect Cd0.5Zn0.5S and ZIF-8 and substantially improve the separation efficiency of photo-excited electrons and holes. The newly-formed chemical bonds are confirmed by XPS analyses, and the prolonged lifetime of photo-excited electrons is evidenced by the electrochemical measurement of photocurrent, which shows that the photocurrent on Cd0.5Zn0.5S@ZIF-8 is much higher than that of Cd0.5Zn0.5S and ZIF-8. This study clearly demonstrates that the MOF-based composite nanomaterials hold great promises for applications in the field of environmental remediation and for design of novel photocatalytic materials.
               
Click one of the above tabs to view related content.