LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Identification of Fe and Zr oxide phases in an iron-zirconium binary oxide and arsenate complexes adsorbed onto their surfaces.

Photo from wikipedia

The Fe-Zr binary oxide adsorbents have higher arsenic adsorptive capacities than either iron oxide or zirconium oxide alone, indicating a strong synergistic effect exists between Fe and Zr oxides. However,… Click to show full abstract

The Fe-Zr binary oxide adsorbents have higher arsenic adsorptive capacities than either iron oxide or zirconium oxide alone, indicating a strong synergistic effect exists between Fe and Zr oxides. However, no generally accepted in-depth explanations have been reached on the origin of this better performance. In the present study, the component phases, the active surface sites, the structure of the adsorbed As(V) surface species, and the mechanism of the synergistic effect, were investigated and elucidated using multiple advanced experimental techniques combined with quantum chemical calculations. Goethite and lepidocrocite were identified as the main Fe oxide components while amorphous zirconium hydroxide was the main Zr oxide component, respectively. A monodentate-mononuclear complex and a bidentate-binuclear complex were revealed to be dominant on the surface, respectively, when at lower and higher initial As(V) concentrations. Density functional theory calculations indicated that As(V) preferred to bind with Zr-OH rather than Fe-OH. This was verified with the As K-edge EXAFS results and XPS observations. The synergistic effect was due to a short-range ordering state, the enlarged contents of amorphous and poorly-crystalline fractions, and increased hydroxyl surface site density. These results lead to the realization that the above properties are preferred in future adsorbent preparations.

Keywords: binary oxide; oxide; zirconium; identification oxide; synergistic effect; oxide phases

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.