LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Electrodialytic 2-compartment cells for emerging organic contaminants removal from effluent.

Photo from wikipedia

The present work discusses the efficiency of the electrodialytic (ED) process to remove emerging organic contaminants (EOCs) from effluent. The ED process was carried out in a cell of two-compartments… Click to show full abstract

The present work discusses the efficiency of the electrodialytic (ED) process to remove emerging organic contaminants (EOCs) from effluent. The ED process was carried out in a cell of two-compartments (2 C-cell) with effluent in either the anode or cathode compartment, separated from the electrolyte compartment through an anion or a cation exchange membrane (AEM and CEM, respectively). As effluent destination might be soil irrigation, and having in mind the nutrient recycling, phosphorus was also monitored in the process. The ED removals showed to be dependent of EOCs characteristics and cell design. Removals were higher when using an AEM (60-72%) than a CEM (8-63%), except for caffeine when the effluent was placed in the cathode, that did not show any removal. When using an AEM with the effluent placed in the anode compartment, all the EOCs (including caffeine) were removed between 57-72%, mainly through electrodegradation phenomena. Regarding phosphorus, a polarity switch may be done to a 2 C-cell with a AEM, depending on the effluent final use. This technology is still in its first steps and, in both cases, further optimization of ED parameters is needed. Still, this technological innovation and cross-cutting research envisages the promotion of economic, social and environmental benefits.

Keywords: compartment; compartment cells; organic contaminants; emerging organic; electrodialytic compartment; effluent

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.