LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Rapid, highly efficient and stable catalytic hydrodechlorination of chlorophenols over novel Pd/CNTs-Ni foam composite catalyst in continuous-flow.

Photo from wikipedia

A novel Pd/CNTs-Ni foam composite catalyst was developed for catalytic hydrodechlorination of chlorophenols by using CNTs-Ni foam as support. Characterizations including FESEM, TEM/HRTEM, HAADF-STEM and element mapping revel that the… Click to show full abstract

A novel Pd/CNTs-Ni foam composite catalyst was developed for catalytic hydrodechlorination of chlorophenols by using CNTs-Ni foam as support. Characterizations including FESEM, TEM/HRTEM, HAADF-STEM and element mapping revel that the composite catalyst with 2 wt.% Pd loading possesses high porous micro-network structure and high dispersed active Pd nanoparticles (5.81 nm) on CNTs surface. The HDC of chlorophenols over Pd/CNTs-Ni foam composite catalyst has been studied in continuous-flow packed bed reactor. This packed bed reactor system with Pd/CNTs-Ni foam composite catalyst, presented the very short reaction cycle (22-74 s), high efficiency (dechlorination > 99.95%) and excellent catalytic stability during HDC in continuous-flow, making it to be a promising candidate for the HDC of wastewater containing highly toxic chlorinated organic pollutants and other Pd catalyzed hydrogenation reactions.

Keywords: foam composite; composite catalyst; continuous flow; cnts foam

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.