LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of natural organic matter on horseradish peroxidase-mediated removal of 17α-ethinylestradiol: Role of molecular weight.

Photo from wikipedia

Ubiquitous natural organic matter (NOM) plays a crucial role in the peroxidase-mediated transformation of phenolic pollutants in aquatic environment. As a poorly defined polydispersed mixture of assorted organic substances with… Click to show full abstract

Ubiquitous natural organic matter (NOM) plays a crucial role in the peroxidase-mediated transformation of phenolic pollutants in aquatic environment. As a poorly defined polydispersed mixture of assorted organic substances with wide molecular weight (MW) distribution, NOM has far prevented researchers from finding out the primarily responsible components for the specific effect. In this work, MW fractionated NOMs (Mf-NOMs) were used to investigate their roles on horseradish peroxidase (HRP)-mediated transformation of 17α-ethinylestradiol (EE2). The removal rate of EE2 was restrained in the presence of pristine or Mf-NOMs, and the inhibitory mechanism was MW-dependent. Low Mf-NOMs restrained the enzymatic reaction by acting as competitive substrates, while high Mf-NOMs retained freely dissolved EE2 which reduced its availability for enzymatic reaction. The contribution of these two processes to the inhibition induced by pristine NOM was further quantified and found to be relevant to the reaction conditions, especially EE2 concentration. The findings of this work reveal more complex influences of NOM on the enzymatic reaction than ever demonstrated, which aids in understanding the fate of EE2 and other congener contaminants in natural and municipal water.

Keywords: peroxidase; natural organic; molecular weight; peroxidase mediated; organic matter; horseradish peroxidase

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.