LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photocatalytic degradation of ibuprofen over BiOCl nanosheets with identification of intermediates.

Photo by kate_gliz from unsplash

Photocatalysis directed at the removal of persistent organic pollutants, including pharmaceuticals, has been the subject of intense recent research. Bismuth oxychloride (BiOCl) has emerged as a potential alternative to traditional… Click to show full abstract

Photocatalysis directed at the removal of persistent organic pollutants, including pharmaceuticals, has been the subject of intense recent research. Bismuth oxychloride (BiOCl) has emerged as a potential alternative to traditional photocatalysts and has shown competitive removal efficiencies. However, pathways responsible for BiOCl photodegradation have not been well characterized. The present work is the first to determine, using LC-MS/MS analysis, the pathways by which BiOCl removes ibuprofen (IBP) from water. HPLC-DAD and LC-MS/MS analyses show that BiOCl converts IBP to two primary photochemical products, 4-isobutylacetophenone (IBAP) and 1-(4-isobutylphenyl)ethanol (IBPE). The reactivity for BiOCl is attributed to interactions of the carboxylic acid group of IBP with holes in the valence band. Hydroxylated-IBP was not detected in BiOCl photocatalytic degradation experiments which would be expected in a process driven by the formation and reactivity of reactive oxygen species. These data were used to formulate a photocatalytic degradation pathway for IBP and highlight the importance of studying both primary and secondary degradation reactions for photocatalytic studies.

Keywords: degradation; degradation ibuprofen; ibuprofen biocl; biocl; biocl nanosheets; photocatalytic degradation

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.