LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Oxidation of Rhodamine B by persulfate activated with porous carbon aerogel through a non-radical mechanism.

Photo by armandoascorve from unsplash

In this study, porous carbon aerogel (CA) was synthesized with D-glucose, ammonium persulfate and aniline by a hydrothermal carbonization method. It was reported for the first time as an excellent… Click to show full abstract

In this study, porous carbon aerogel (CA) was synthesized with D-glucose, ammonium persulfate and aniline by a hydrothermal carbonization method. It was reported for the first time as an excellent catalyst for activating persulfate (PS) to degrade rhodamine B (RhB). The morphology of CA was characterized, exhibiting microporous and mesoporous structures. The solution pH of 3, 5, 7 and 9 showed slight impact on the degradation of RhB; however, when the pH increased to 11, the removal of RhB decreased. The PS concentration and CA dosage played a key role in the RhB degradation, and the activation energy was calculated to be 22.11 kJ/mol. Electron paramagnetic resonance (EPR) spectra suggested that neither sulfate radical (SO4-) nor hydroxyl radical (OH) was generated from the PS activation. The radical quenching experiments also confirmed that CA activated PS in a non-radical pathway. It was indicated that PS bonded with CC in the sp2 hybridized system could directly degrade RhB. The defective edges at the boundary of CA also facilitated the RhB removal. This work presented a green material with both excellent catalytic performance and high regeneration possibility in the heterogeneous metal-free PS activation, providing a new strategy in water treatment.

Keywords: rhb; persulfate; carbon aerogel; non radical; porous carbon

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.