An optical immunosensor based on White Light Reflectance Spectroscopy for the simultaneous determination of the herbicides atrazine and paraquat in drinking water samples is demonstrated. The biosensor allows for the… Click to show full abstract
An optical immunosensor based on White Light Reflectance Spectroscopy for the simultaneous determination of the herbicides atrazine and paraquat in drinking water samples is demonstrated. The biosensor allows for the label-free real-time monitoring of biomolecular interactions taking place onto a SiO2/Si chip by transforming the shift in the reflected interference spectrum due to reaction to effective biomolecular layer thickness. Dual-analyte determination is accomplished by functionalizing spatially distinct areas of the chip with protein conjugates of the two herbicides and scanning the surface with an optical reflection probe. A competitive immunoassay format was adopted, followed by reaction with secondary antibodies for signal enhancement. The sensor was highly sensitive with detection limits of 40 and 50 pg/mL for paraquat and atrazine, respectively, and the assay duration was 12 min. Recovery values ranging from 90.0 to 110% were determined for the two pesticides in spiked bottled and tap water samples, demonstrating the sensor accuracy. In addition, the sensor could be regenerated and re-used at least 20 times without significant effect on the assay characteristics. Its excellent analytical performance and short analysis time combined with the small sensor size should be helpful for fast on-site determinations of these analytes.
               
Click one of the above tabs to view related content.