LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Ultra-low content of Pt modified CdS nanorods: Preparation, characterization, and application for photocatalytic selective oxidation of aromatic alcohols and reduction of nitroarenes in one reaction system.

Photo from wikipedia

A series of Pt nanoparticles (with size of 3-4 nm) decorated CdS nanorods were prepared via a simple solvothermal method. The samples were then used for photocatalytic selective oxidation (SO) of… Click to show full abstract

A series of Pt nanoparticles (with size of 3-4 nm) decorated CdS nanorods were prepared via a simple solvothermal method. The samples were then used for photocatalytic selective oxidation (SO) of aromatic alcohols and reduction (SR) of nitroarenes in one reaction system. The platinized samples showed enhanced activity for the conversions than pristine CdS as Pt can serve as e- trapping and reaction sites, by which the recombination of photoinduced charge carriers can be suppressed and the adsorption of reactants and the SR of nitroarenes can be promoted. The sample loaded with only of 0.03% Pt showed the highest performance and, after irradiation for 4 h, the conversions of p-methoxybenzyl alcohol and nitrobenzene are as high as 92.7% and 94.8%, while the yields of p-methoxybenzaldehyde and aniline are 80.5% and 36.0%. The activities are about 2.0 times higher than that of CdS. The coupling reaction mechanism for the SO of aromatic alcohols to aldehydes and SR of nitroarenes to anilines in the reaction system was finally proposed.

Keywords: reaction system; photocatalytic selective; aromatic alcohols; cds nanorods; reaction

Journal Title: Journal of hazardous materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.