LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The impact of iron nanoparticles on technetium-contaminated groundwater and sediment microbial communities.

Photo from wikipedia

Iron nanoparticles are a promising new technology to treat contaminated groundwater, particularly as they can be engineered to optimise their transport properties. Technetium is a common contaminant at nuclear sites… Click to show full abstract

Iron nanoparticles are a promising new technology to treat contaminated groundwater, particularly as they can be engineered to optimise their transport properties. Technetium is a common contaminant at nuclear sites and can be reductively scavenged from groundwater by iron(II). Here we investigated the potential for a range of optimised iron nanoparticles to remove technetium from contaminated groundwater, and groundwater/sediment systems. Nano zero-valent iron and Carbo-iron stimulated the development of anoxic conditions while generating Fe(II) which reduced soluble Tc(VII) to sparingly soluble Tc(IV). Similar results were observed for Fe(II)-bearing biomagnetite, albeit at a slower rate. Tc(VII) remained in solution in the presence of the Fe(III) mineral nano-goethite, until acetate was added to stimulate microbial Fe(III)-reduction after which Tc(VII) concentrations decreased concomitant with Fe(II) ingrowth. The addition of iron nanoparticles to sediment microcosms caused an increase in the relative abundance of Firmicutes, consistent with fermentative/anoxic metabolisms. Residual bacteria from the synthesis of the biomagnetite nanoparticles were out-competed by the sediment microbial community. Overall the results showed that iron nanoparticles were highly effective in removing Tc(VII) from groundwater in sediment systems, and generated sustained anoxic conditions via the stimulation of beneficial microbial processes including Fe(III)-reduction and sulfate reduction.

Keywords: groundwater sediment; contaminated groundwater; iron nanoparticles; sediment microbial; iron; technetium contaminated

Journal Title: Journal of hazardous materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.