Oil spills occur frequently worldwide, resulting in severe damage to water and to human health. Polycyclic aromatic hydrocarbons (PAHs) are the primary toxic components in oil contamination. PAH-degrading microbes have… Click to show full abstract
Oil spills occur frequently worldwide, resulting in severe damage to water and to human health. Polycyclic aromatic hydrocarbons (PAHs) are the primary toxic components in oil contamination. PAH-degrading microbes have attracted significant attention, but difficulty in their selection and proliferation limits their applications. Graphene oxide quantum dots (GOQDs) improve the proliferation of an indigenous PAH-degrading strain, Bacillus cereus, more effectively than large graphene oxide flakes. Bacillus cereus can metabolize a variety of xenobiotic aromatic compounds as carbon sources and is used in bioremediation. GOQDs contain a variety of aromatic hydrocarbon structures, explaining why the bacteria achieve strong tolerance to PAHs. GOQD-activated cytokinesis increases the secretion of substances important for biofilm formation (extracellular polymeric substances), which further accelerates PAH removal. Proteomic analysis reveals the molecular mechanisms underlying GOQD-induced microbial proliferation. GOQDs induce the overexpression of microbial divisomal proteins associated with division initiation, DNA replication and peptidoglycan hydrolysis/synthesis. Importantly, PAH removal mediated by GOQD-treated Bacillus cereus does not require the addition of GOQDs. The effects of GOQDs on a strain persist for at least 20 generations, suggesting their possible use in low-cost applications. This work proposes a strategy to remove oil contamination using an indigenous bacterial system enhanced by nanomaterials.
               
Click one of the above tabs to view related content.