LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Kinetic mechanism of aluminum removal from diamond wire saw powder in HCl solution.

Photo from wikipedia

Impurity removal is essential for the recovery and regeneration of silicon resources from diamond wire saw powder by metallurgical purification technologies. In this paper, the aluminum was removed from the… Click to show full abstract

Impurity removal is essential for the recovery and regeneration of silicon resources from diamond wire saw powder by metallurgical purification technologies. In this paper, the aluminum was removed from the diamond wire saw powder via a direct HCl leaching method. In order to analyze the removal efficiency of various experimental conditions, certain parameters such as HCl concentration, leaching temperature, reaction time and liquid-solid ratio were also investigated. Particularly, the removal efficiency of Al reached 95.6% under the optimal leaching condition, such as the HCl concentration of 4 mol·L-1, the leaching temperature of 60 °C, the reaction time of 3 h, and the liquid-solid ratio of 10. The shrinking core model and homogeneous model were then respectively utilized to describe the leaching kinetics of the Al removal leaching process. The results indicated that the homogeneous model was more suitable than the shrinking core model. Moreover, the kinetics parameters regarding the reaction orders m=3, n=2.81, the activation energy Ea=97.30kJmol-1, the frequency factor A=1.11×1014 min-1. Furthermore, the leaching mechanism of Al removal was revealed based on kinetic analysis and materials characterization. This work is of great practical value in terms of regenerating silicon resources from the diamond wire saw powder waste materials with efficient and low cost methods.

Keywords: hcl; diamond wire; saw powder; wire saw

Journal Title: Journal of hazardous materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.