LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Degradation of antibiotics in multi-component systems with novel ternary AgBr/Ag3PO4@natural hematite heterojunction photocatalyst under simulated solar light.

Photo from wikipedia

Abatement of antibiotics from aquatic systems is of great importance but remains a challenge. Herein, we prepared ternary AgBr/Ag3PO4@natural hematite (AgBr/Ag3PO4@NH) heterojunction composite via a simple route for the photocatalytic… Click to show full abstract

Abatement of antibiotics from aquatic systems is of great importance but remains a challenge. Herein, we prepared ternary AgBr/Ag3PO4@natural hematite (AgBr/Ag3PO4@NH) heterojunction composite via a simple route for the photocatalytic degradation of antibiotic pollutants. By adjusting the dose of Ag species, four products with different Ag content (denoted as Ag0.5BrPFe, Ag1BrPFe, Ag1.5BrPFe, and Ag2BrPFe) were developed. Among them, Ag1.5BrPFe exhibited the best photocatalytic activity. Four antibiotics (i.e. ciprofloxacin (CIP), norfloxacin (NOR), sulfadiazine (SDZ), and tetracycline (TTC)) could be degraded with synthesized Ag1.5BrPFe in multi-component systems. Water matrix indexes including solution pH, coexisting anions, humic acids exhibited distinct effects on the degradation process. The results revealed that the degradation process was accelerated at acidic conditions while depressed at basic conditions. Superoxide radical and hole were detected by in situ electron spin resonance technique and played the dominant roles. The degradation pathway TTC was tentatively established followed with the identification of the degradation intermediates and computational analysis. This work would shed light on the photocatalytic degradation mechanism of organic pollutants by the AgBr/Ag3PO4@NH composite.

Keywords: ag3po4 natural; degradation; agbr ag3po4; ternary agbr; natural hematite

Journal Title: Journal of hazardous materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.