LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

High efficient adsorption and storage of iodine on S, N co-doped graphene aerogel.

Photo from archive.org

High efficient adsorption of radioiodine in nuclear waste has attracted extensive attentions all over the world. In this work, we fabricated sulfur and nitrogen co-doped graphene aerogels (SN-GA) through one-step… Click to show full abstract

High efficient adsorption of radioiodine in nuclear waste has attracted extensive attentions all over the world. In this work, we fabricated sulfur and nitrogen co-doped graphene aerogels (SN-GA) through one-step hydrothermal method, and investigated its iodine adsorption behavior including adsorption kinetics and isotherms in water. Our results reveal that SN-GA exhibits a 3D porous architecture with thiophene-S, oxidized-S, pyridine-N, pyrrole-N and graphite-N co-doped into the sp2 carbon frameworks. The adsorption experiment showed SN-GA has a maximum iodine adsorption capacity of 999 mg g-1 determined by Langmuir isotherm, and the adsorption process could be better described by the pseudo-second-order model.

Keywords: efficient adsorption; adsorption; high efficient; adsorption storage; doped graphene

Journal Title: Journal of hazardous materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.