LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of PROSPECT for estimating total petroleum hydrocarbons in contaminated soils from leaf optical properties.

Photo by orkhanfarmanli from unsplash

Recent advances in hyperspectral spectroscopy suggest making use of leaf optical properties for monitoring soil contamination in oil production regions by detecting pigment alterations induced by Total Petroleum Hydrocarbons (TPH).… Click to show full abstract

Recent advances in hyperspectral spectroscopy suggest making use of leaf optical properties for monitoring soil contamination in oil production regions by detecting pigment alterations induced by Total Petroleum Hydrocarbons (TPH). However, this provides no quantitative information about the level of contamination. To achieve this, we propose an approach based on the inversion of the PROSPECT model. 1620 leaves from five species were collected on a site contaminated by 16 to 77 g.kg-1 of TPH over a 14-month period. Their spectral signature was measured and used in PROSPECT model inversions to retrieve leaf biochemistry. The model performed well for simulating the spectral signatures (RMSE < 2%) and for estimating leaf pigment contents (RMSE ≤ 2.95 μg.cm-2 for chlorophylls). Four out of the five species exhibited alterations in pigment contents when exposed to TPH. A strong correlation was established between leaf chlorophyll content and soil TPH concentrations (R2 ≥ 0.74) for three of them, allowing accurate predictions of TPH (RMSE =3.20 g.kg-1 and RPD = 5.17). The accuracy of predictions varied by season and improved after the growing period. This study demonstrates the capacity of PROSPECT to estimate oil contamination and opens up promising perspectives for larger-scale applications.

Keywords: petroleum hydrocarbons; application prospect; optical properties; leaf optical; total petroleum

Journal Title: Journal of hazardous materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.