LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Simultaneous oxidation and adsorption of arsenic by one-step fabrication of alum sludge and graphitic carbon nitride (g-C3N4).

Photo from wikipedia

The oxidation of trivalent arsenic (As(III)) to pentavalent arsenic (As(V)) is a common pretreatment to remove As(III) from the aqueous phase. The graphitic carbon nitride as a photocatalyst can transform… Click to show full abstract

The oxidation of trivalent arsenic (As(III)) to pentavalent arsenic (As(V)) is a common pretreatment to remove As(III) from the aqueous phase. The graphitic carbon nitride as a photocatalyst can transform As(III) to As(V), but the photocatalyst does not adsorb any species of arsenic. In this study, a new composite material to achieve the simultaneous oxidation and adsorption of arsenic was synthesized by co-pyrolyzing alum sludge and melamine. It was hypothesized that graphitic carbon nitride derived from melamine oxidizes As(III) to As(V) and pyrolyzed alum sludge provides strong adsorption sites for the oxidized As(V). The composites were characterized by X-ray diffraction, Brunauer-Emmett-Teller(BET) surface, scanning electron microscope, and X-ray photoelectron spectrometer. The composite material effectively converted As(III) to As(V) under the light, and the total arsenic concentration decreased in the aqueous phase via the adsorption of As(V). Speciation analysis of arsenic on the composite showed that both As(III) and As(V) species were present on the surface of adsorbent, from which desorption by mixing with deionized water was difficult. This new and green composite material can oxidize As(III) and adsorb arsenic simultaneously under the light, which can be used to treat arsenic-containing water.

Keywords: adsorption; oxidation; alum sludge; graphitic carbon; carbon nitride

Journal Title: Journal of hazardous materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.