LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microwave-absorbing properties of cathode material during reduction roasting for spent lithium-ion battery recycling.

Photo from wikipedia

As a hazardous material to the environment and human health, spent lithium-ion batteries need to be recycled in a reasonable way. To explore the effect of microwave heating on spent… Click to show full abstract

As a hazardous material to the environment and human health, spent lithium-ion batteries need to be recycled in a reasonable way. To explore the effect of microwave heating on spent lithium-ion batteries (LIBs) recycling, the microwave-absorbing properties of a spent cathode powder (LiNixCoyMnzO2) were studied by measuring its dielectric properties from 25-900 °C at 2450 MHz under different conditions (temperature, carbon dose and apparent density). X-ray diffraction and thermogravimetric analysis (TGA) were used to study decomposition and reduction reactions in the heating process. The results indicated that the cathode material has good microwave-absorbing properties over the entire temperature range (25-900 °C), especially when mixed with carbon. As the reduction reactions proceed, the dielectric properties of the material increase rapidly from 600 °C, which means that microwave heating can promote a carbothermal reduction reaction. The effect of the carbon dose on the dielectric properties indicates that the carbothermal reduction reaction can fully occur when the carbon dose reaches 18%. Furthermore, the best microwave-absorbing performance can be achieved when the apparent density of the material is 1.41 g/cm3. These studies have established a basis for research towards the direct recovery of lithium from LIBs by microwave reduction roasting.

Keywords: reduction; microwave absorbing; absorbing properties; spent lithium; lithium ion

Journal Title: Journal of hazardous materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.