In this work, we coated carbon nanotubes (CNT) supported Pt catalyst by conductive carbon layers (labelled as Pt/CNT@C) and the catalyst was further functionalized by surface oxidation (denoted as Pt/CNT@Oxi-C).… Click to show full abstract
In this work, we coated carbon nanotubes (CNT) supported Pt catalyst by conductive carbon layers (labelled as Pt/CNT@C) and the catalyst was further functionalized by surface oxidation (denoted as Pt/CNT@Oxi-C). The textural properties of the catalysts were extensively characterized and liquid phase catalytic hydrogenation reduction of Cu2+ was conducted. Results showed that Pt particles of Pt/CNT@C and Pt/CNT@Oxi-C were completely embedded beneath carbon overcoatings. Furthermore, contrary to Pt/CNT no CO chemisorption was observed on both Pt/CNT@C and Pt/CNT@Oxi-C, indicative of the absence of exposed Pt particles in carbon-coated Pt/CNT. Effective Cu2+ reduction and metallic Cu deposition by catalytic hydrogenation were achieved on catalyst surface. Surface oxidation of Pt/CNT@C resulted in increased surface wetting and functionality content, leading to noticeable enhancement in catalytic activity for Cu2+ reduction. Additionally, Cu2+ reduction on Pt/CNT@Oxi-C proceeded through the Langmuir-Hinshelwood model, suggesting that the reduction of Cu2+ adsorbed on catalyst surface was the rate-determining step. Carbonization of overcoatings exhibited a volcano-type relationship between carbonization temperature and catalytic activity of Pt/CNT@C for Cu2+ reduction. As for catalyst reuse, Pt/CNT lost 92 % of initial activity after five consecutive reaction cycles, whereas Pt/CNT@Oxi-C maintained a high catalytic activity without remarkable deactivation.
               
Click one of the above tabs to view related content.