LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Pb(II) uptake onto nylon microplastics: Interaction mechanism and adsorption performance.

Photo from wikipedia

Both heavy metals and microplastic pollutants are ubiquitous in the aquatic environment. The uptake of lead(II) ions from aqueous solutions onto aged nylon microplastics was investigated as a function of… Click to show full abstract

Both heavy metals and microplastic pollutants are ubiquitous in the aquatic environment. The uptake of lead(II) ions from aqueous solutions onto aged nylon microplastics was investigated as a function of pH, contact time, temperature, supporting electrolyte concentration and fulvic acid concentration in batch studies. The effect of surface properties on the adsorption behavior of lead(II) was investigated with scanning electron microscope equipped with the energy dispersive X-ray spectroscope (SEM-EDAX), Fourier transform-infrared (FTIR) spectroscopy, thermal gravimetric analysis (TGA), X-ray diffraction (XRD) and differential scanning calorimetric (DSC). The adsorption kinetics conformed to the pseudo-second order equation, Elovich equation and intraparticle diffusion model well. The experimental data of the adsorption process was fitted to the Langmuir and Freundlich adsorption isotherms and the parameters were estimated. The lead(II) uptake on aged nylon microplastics was spontaneous and endothermic in nature. The lead(II) adsorption was significantly dependent on the sodium chloride concentrations, initial solution pH and fulvic acid concentrations. Results of this study highlight the importance of surface carboxyl function group of aged nylon microplastics in controlling lead(II) adsorption.

Keywords: adsorption; onto nylon; aged nylon; uptake onto; nylon microplastics

Journal Title: Journal of hazardous materials
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.