LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Interactions of PAH-degradation and nitrate-/sulfate-reducing assemblages in anaerobic sediment microbial community.

Photo from wikipedia

Nitrate and sulfate are electron acceptors (EAs) for biodegradation of polycyclic aromatic hydrocarbons (PAHs) in anaerobic sediments. The efficiency of PAHs biodegradation depends on the strength of the interactions between… Click to show full abstract

Nitrate and sulfate are electron acceptors (EAs) for biodegradation of polycyclic aromatic hydrocarbons (PAHs) in anaerobic sediments. The efficiency of PAHs biodegradation depends on the strength of the interactions between PAH-degradation and EA-reduction assemblages. However, these interactions are less studied. In this study, microbial response and PAH degradation efficiencies in river sediment were investigated using nitrate and sulfate stimulation. Results showed that the functional assemblages (PAH-degraders, nitrate- and sulfate- reducers) were low connectivity in the microbial network without EA adding. Nitrate input rapidly (<1 day) raised the nitrate reduction intensity. And the PAH-degraders and nitrate reducers established significant and direct correlations under nitrate stimulation, seen from the 13 connectors (nodes) in the microbial network. In contrast, sulfate reducers slowly increased in abundance (>20 days) and were connected to PAH-degraders through indirect connection under sulfate stimulation. The null model suggested that nitrate led to a higher level of directional selection, which implied that nitrate was a more favorable EA to trigger the deterministic succession. As a result, PAHs degradation was faster with nitrate stimulation (t1/2 = 68.3 d) than with sulfate stimulation (t1/2 = 164.6 d). These mechanistic understandings can serve as the guidelines for EA selection in bioremediation.

Keywords: sulfate; pah degradation; stimulation; interactions pah; nitrate sulfate

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.