LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Nanostructured chitosan/molecular sieve-4A an emergent material for the synergistic adsorption of radioactive major pollutants cesium and strontium.

Photo from wikipedia

A fresh adsorbent nanostructured chitosan/molecular sieve 4A hybrid (NSC@MS-4A) was fabricated for the rapid adsorption of strontium (Sr2+) and cesium (Cs+) ions from aqueous solutions. The as-obtained NSC@MS-4A were thoroughly… Click to show full abstract

A fresh adsorbent nanostructured chitosan/molecular sieve 4A hybrid (NSC@MS-4A) was fabricated for the rapid adsorption of strontium (Sr2+) and cesium (Cs+) ions from aqueous solutions. The as-obtained NSC@MS-4A were thoroughly characterized by XRD, FE-SEM, EDS, BET, XPS and FT-IR. The physio-chemical properties and structural aspects revealed that NSC@MS-4A acquires fine surface area (72 m2/g), porous structure as well as compatible functional groups (-P-O-P and -C-O-C) for the admission of Cs+ and Sr2+ ions. The batch adsorption studies concluded that prepared adsorbent displayed a maximum adsorption of 92-94 % within 40 min. Fast adsorption of Cs+ and Sr2+ was achieved at neutral pH (6-7), ambient temperature (25-30 °C) and slow agitation speed (50-60 rpm) which could propose vast benefits such as little power utilization and uncomplicated operation. Among six types of adsorption isotherms, Freundlich isotherm showed the best fit with R2>0.997. Pseudo-second order made a better agreement as compare to other kinetic models. The thermodynamic coefficients suggested the passage of Cs+ and Sr2+ ions through the liquid solid boundary is exothermic and spontaneous. The NSC@MS-4A displayed excellent regenerability properties over five repetitive adsorption/desorption cycles, which specified that as-obtained NSC@MS-4A is a sustainable as well as efficient adsorbent for practical decontamination of radioactive liquid waste.

Keywords: adsorption; nanostructured chitosan; molecular sieve; strontium; chitosan molecular

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.