Instrument-free, portable and direct read-out mini-devices have wider application prospects in various fields, especially for real-time/on-site detection in environmental science. Herein, a colorimetric fluorescent sensor for detecting cadmium ions (Cd2+)… Click to show full abstract
Instrument-free, portable and direct read-out mini-devices have wider application prospects in various fields, especially for real-time/on-site detection in environmental science. Herein, a colorimetric fluorescent sensor for detecting cadmium ions (Cd2+) based on aggregation-induced emission (AIE) was established, fluorescent paper strips integrated with smartphone platform was further designed for the visualization, on-site and quantitative detection of Cd2+. The colorimetric fluorescent sensor was prepared by mixing orange emission glutathione-stabilized gold nanoclusters (AuNCs) with blue emission ethylenediamine functionalized graphene oxide (EDA-GO), and introducing copper ions (Cu2+) to quench the orange emission of AuNCs while the blue emission served as a background reference without color change. The Cd2+ can induce Cu2+-GSH-AuNCs to aggregation and emit orange fluorescence, causing the fluorescent color of the sensor changed from blue to red with the limit of detection (LOD) as low as 33.3 nM in solution. Moreover, fluorescent paper strips integrated with smartphone platform has a sensitive detection of Cd2+ with the LOD of 0.1 μM in rice samples. The method reported here might have great application prospects in real-time monitoring of foods safety and environmental protection.
               
Click one of the above tabs to view related content.