LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Microsecond molecular dynamics simulation of the adsorption and penetration of oil droplets on cellular membrane.

Photo from wikipedia

The hazardous effects of petroleum contaminants in the soil and water environment are highly associated with their interactions with cellular membranes, but our understanding on the molecular-level mechanisms for the… Click to show full abstract

The hazardous effects of petroleum contaminants in the soil and water environment are highly associated with their interactions with cellular membranes, but our understanding on the molecular-level mechanisms for the adsorption and penetration of heavy oil mixture on cellular membrane is very limited. In this study, microsecond molecular dynamics simulations were performed to gain insights into the morphological evolution and penetration dynamics of the multi-component and single-component oil droplets on the dipalmitoylphosphatidylcholine lipid membrane. Results highlighted the inhibition effect of the resins on the penetration of alkanes and aromatics, because they would form net structure making it difficult to release the latter two components from the oil droplet to the membrane. It also demonstrated the obviously different patterns of penetration between alkanes and aromatics. The overall steps for the toluene penetration included detachment from oil droplet, dispersion in water, adsorption on membrane surface, structure adjustment and penetration into membrane. By contrast, the step of dispersion in water was not necessary for the alkanes' penetration. Instead, it relied on the adsorption of the whole oil droplet on the membrane surface which resulted in the formation of pores on the membrane surface by local structure deformation in the lipid head group regions.

Keywords: adsorption penetration; penetration; cellular membrane; membrane; oil

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.