LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of Zn/Al layered double hydroxides for the removal of nano-scale plastic debris from aqueous systems.

Photo from wikipedia

Nano-scale plastic debris (NPDs) are emerging as potential contaminants as they can be easily ingested by aquatic organisms and carry many pollutants in the environment. This study is aimed to… Click to show full abstract

Nano-scale plastic debris (NPDs) are emerging as potential contaminants as they can be easily ingested by aquatic organisms and carry many pollutants in the environment. This study is aimed to remove NPDs from aqueous environment for the first time by using eco-friendly adsorption techniques. Initially, the interaction between NPDs and synthesized Zn-Al layered double hydroxide (LDH) was confirmed by pH titration of Zn-Al LDH against NPDs at varying mass ratio (50:1 to 50:7) and FTIR analysis for both before and after 2 h of contact time. Fast removal was observed in deionized water and synthetic freshwater with maximum sorption capacity (Qmax) of 164.49 mg/g,162.62 mg/g, respectively, according to Sips isotherm. Whereas, removal was least in synthetic hard water having a Qmax value of 53 mg/g. For 2 mM concentration of SO42- and PO43-, the adsorption capacity significantly decreased to 2%. The removal efficiency was found 100 % at pH 4, while at pH 9, it reached 37 % due to increased competitive binding and destabilization of LDH under alkaline conditions. The process of sorption was spontaneous in different types of water studied. The study reveals that Zn-Al LDH can be used as potential adsorbent for the removal of NPDs from freshwater systems.

Keywords: layered double; plastic debris; nano scale; scale plastic

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.