Tri-n-butyl phosphate (TnBP) is a typical alkyl organophosphate ester that has been used for decades in various products. However, toxicity on terrestrial organisms induced by TnBP has been rarely reported… Click to show full abstract
Tri-n-butyl phosphate (TnBP) is a typical alkyl organophosphate ester that has been used for decades in various products. However, toxicity on terrestrial organisms induced by TnBP has been rarely reported though soil is a predominant sink for hydrophobic organic compounds. The objective of this study was to investigate the TnBP-induced intestinal toxicity mechanism on earthworm Eisenia fetida as well as the potential role of gut bacteria on host's health. TnBP was found to have high bioconcentrations in earthworm intestinal tract. Digestive tract degradation and digestive enzyme activities disruption associated with nutrients absorption were noticed. Using multi-omics approaches, detailed intestinal toxic mechanism of earthworms under TnBP exposure was provided. Tight junctions between small intestinal epithelial cells and osmotic equilibrium were destroyed under 10 mg/kg TnBP, leading to nutrient absorption disturbance. To satisfy the excessive energy requirements induced by TnBP, amino acids gluconeogenesis and protein degradation were detected. Moreover, TnBP significantly decreased the diversity of gut microbiota and changed their structure and function involved in hosts' health and nutrients supply. Overall, this study provides insight into the molecular mechanism of intestinal toxicity by which earthworms respond to TnBP exposure and offer important information for risk assessment of organophosphate esters on soil ecosystems.
               
Click one of the above tabs to view related content.