LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Glyphosate-dependent effects on photosynthesis of Solanum lycopersicum L.-An ecophysiological, ultrastructural and molecular approach.

Photo from archive.org

This study aimed to assess the toxicity of glyphosate (GLY; 0, 10, 20 and 30 mg kg-1) in Solanum lycopersicum L., particularly focusing on the photosynthetic metabolism. By combining ecophysiological, ultrastructural, biochemical… Click to show full abstract

This study aimed to assess the toxicity of glyphosate (GLY; 0, 10, 20 and 30 mg kg-1) in Solanum lycopersicum L., particularly focusing on the photosynthetic metabolism. By combining ecophysiological, ultrastructural, biochemical and molecular tools, the results revealed that the exposure of tomato plants to GLY led to alterations in leaf water balance regulation [increasing stomatal conductance (gs) and decreasing water use efficiency (WUEi) at higher concentrations] and induced slight alterations in the structural integrity of cells, mainly in chloroplasts, accompanied by a loss of cell viability. Moreover, the transcriptional and biochemical control of several photosynthetic-related parameters was reduced upon GLY exposure. However, in vivo chlorophyll fluorometry and IRGA gas-exchange studies revealed that the photosynthetic yield of S. lycopersicum was not repressed by GLY. Overall, GLY impacts cellular and subcellular homeostasis (by affecting chloroplast structure, reducing photosynthetic pigments and inhibiting photosynthetic-related genes transcription), and leaf structure, but is not reducing the carbon flow on a leaf area basis. Altogether, these results suggest a trade-off effect in which GLY-induced toxicity is compensated by a higher photosynthetic activity related to GLY-induced dysfunction in gs and an increase in mesophyll thickness/density, allowing the viable leaf cells to maintain their photosynthetic capacity.

Keywords: glyphosate dependent; dependent effects; ecophysiological ultrastructural; effects photosynthesis; solanum lycopersicum; photosynthesis solanum

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.