LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The superoxide radicals' production via persulfate activated with CuFe2O4@Biochar composites to promote the redox pairs cycling for efficient degradation of o-nitrochlorobenzene in soil.

Photo from wikipedia

CuFe2O4 nanoparticles are decorated on biochar (BC) by modified sol-gel method to form the CuFe2O4@BC catalyst for persulfate (PS) activation in a wide pH range. The application of CuFe2O4@BC for… Click to show full abstract

CuFe2O4 nanoparticles are decorated on biochar (BC) by modified sol-gel method to form the CuFe2O4@BC catalyst for persulfate (PS) activation in a wide pH range. The application of CuFe2O4@BC for o-nitrochlorobenzene degradation in soil was explored in this study. The mechanism of heterogeneous PS activation was comprehensively investigated. The synergistic effects between CuFe2O4 and BC could enhance catalytic activity and stability, including well dispersed CuFe2O4 species, efficient electron transfer and abundant oxygen functional groups. The superoxide radicals (O2-) produced from CuFe2O4 and BC could mediate Cu(I)/Cu(II) and Fe(II)/Fe(III) redox pairs on CuFe2O4@BC surface to activate PS, and then generating •OH and SO4- continuously. Moreover, the reaction intermediates are identified as well to elucidate the possible degradation pathways. These findings help to achieve more comprehensive understanding of the heterogeneous activation process of PS by CuFe2O4@BC catalyst.

Keywords: degradation; superoxide radicals; persulfate; cufe2o4; redox pairs; soil

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.