LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Antioxidant defense system in lettuces tissues upon various As species exposure.

Photo from wikipedia

Characterization of antioxidant response is essential to elucidate the mechanism for plants tolerating arsenic (As) stress. Ten-day old lettuces were exposed to 50, 100, and 200 μg L-1 of arsenite (As(III)), arsenate… Click to show full abstract

Characterization of antioxidant response is essential to elucidate the mechanism for plants tolerating arsenic (As) stress. Ten-day old lettuces were exposed to 50, 100, and 200 μg L-1 of arsenite (As(III)), arsenate (As(V)) or dimethylarsinic acid (DMA) for 50 days in hydroponic culture. The activities of superoxide dismutase, catalase, peroxidase, glutathione peroxidase, monodehydroascorbate reductase, dehydroascorbate reductase and glutathione reductase, as well as the glutathione concentration in tissues, were monitored. And the speciation and occurrence of As were concurrently analyzed in roots and leaves. The results showed that As(III) was the predominant As species in lettuces upon inorganic As exposure, while DMA was the primary As species upon DMA exposure. DMA presented higher mobility than inorganic As. The reduction of As(V) in roots upon As(V) exposure and in leaves upon As(III) exposure were suggested. The alterations of enzymatic antioxidant activities and non-enzymatic antioxidant contents showed that the antioxidant responses were As species-dependent, dose-dependent and tissue-dependent. And upon As(V) and DMA exposures, antioxidant responses were more intense than that upon As(III) exposure. Further the results indicated that the antioxidant responses in lettuce were associated with the conversion and transport of As species.

Keywords: dma; antioxidant responses; exposure; antioxidant defense; system lettuces; defense system

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.