LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A novel colloid composited with polyacrylate and nano ferrous sulfide and its efficiency and mechanism of removal of Cr(VI) from Water.

Photo from wikipedia

Nano ferrous sulfide (n-FeS) colloids show an excellent performance in the application of remediation in situ soil and groundwater. However, due to the interfacial effect and high reactivity of the… Click to show full abstract

Nano ferrous sulfide (n-FeS) colloids show an excellent performance in the application of remediation in situ soil and groundwater. However, due to the interfacial effect and high reactivity of the nano sized FeS, n-FeS easy to agglomerate, which reduces their remediation efficiency. In this study, a novel composite colloid was synthesized using polyacrylic acid salt (PAA) and n-FeS. The PAA-n-FeS colloid was used to remove Cr(VI) in water remediation, and its removal mechanism and efficiency were explored. The results showed that the hydrodynamic diameter of PAA-n-FeS ranged from 65.04-90.09 nm and the zeta potential was from -27 to -54 mV at pH varying from 4.5-9.0. PAA was coated on the surface of n-FeS, which improved the dispersibility and stability of n-FeS by increasing the steric hindrance and electrostatic repulsion between n-FeS particles. Moreover, the Cr(VI) maximum removal amount PAA-n-FeS was 432.79 mg/g, which was significantly higher than that of n-FeS (218.29 mg/g) and PAA (12.32 mg/g). The mechanism of PAA-n-FeS removal of Cr(VI) was mainly derived from its own reducibility. The reaction products were mainly Cr(OH)3, Cr(III)-Fe(III), Cr2O3, and Cr2S3. This research not only finds a new stabilizer for preventing n-FeS agglomeration, but also provides a novel n-FeS composited colloid for promoting the practical application to Cr(VI) removal from water.

Keywords: fes; water; colloid; paa fes; efficiency

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.