LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

La-doping induced localized excess electrons on (BiO)2CO3 for efficient photocatalytic NO removal and toxic intermediates suppression.

Photo from wikipedia

Photocatalysis technology has been extensively adopted to abate typical air pollutants. Nevertheless, it is a challenge to develop photocatalysts aiming to simultaneously improve photocatalytic selectivity and efficiency. In this study,… Click to show full abstract

Photocatalysis technology has been extensively adopted to abate typical air pollutants. Nevertheless, it is a challenge to develop photocatalysts aiming to simultaneously improve photocatalytic selectivity and efficiency. In this study, to improve the photocatalytic selectivity and the performance of (BiO)2CO3 in the oxidation of NO to target products (NO2- /NO3-), we developed a novel method to construct La-doped (BiO)2CO3 (La-BOC) for forming localized excess electrons (Ex) on (BiO)2CO3 surface. The results indicate that the Ex could effectively accelerate the activation of reactants and promote charge separation and transfer. Under visible light, the gas molecules could capture the Ex and get activated to produce reactive oxygen species (ROS) with high oxidation ability, which enables complete oxidation of NO to target products instead of producing other toxic by-products. Due to the functionality of the Ex, the photocatalytic selectivity and efficiency of La-BOC have been synchronously improved. Combining experimental and theoretical methods, this work unravels the pathway of charge carriers transportation/transformation and elucidates the photocatalytic NO oxidation mechanism. The present work could provide a novel method to improve photocatalytic selectivity and activity for safe air pollutant abatement.

Keywords: photocatalytic selectivity; localized excess; excess electrons; electrons bio; bio 2co3

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.