LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient activation of peroxymonosulfate by composites containing iron mining waste and graphitic carbon nitride for the degradation of acetaminophen.

Photo from wikipedia

In this work, the potential to use an iron mining waste (IW), rich in α-Fe2O3 and α-FeOOH, for the development of composites based on graphitic carbon nitride (CN) is demonstrated.… Click to show full abstract

In this work, the potential to use an iron mining waste (IW), rich in α-Fe2O3 and α-FeOOH, for the development of composites based on graphitic carbon nitride (CN) is demonstrated. These materials were synthesized through a simple thermal treatment at 550 °C of a mixture containing melamine and different IW mass percentages, giving rise to the catalysts xIWCN (where x is related to the initial mass percentage of IW). The iron phases of the precursor were partially transformed throughout the formation of the composites, in such a way that a mixture of α-Fe2O3 and γ-Fe2O3 was observed in their final composition. Furthermore, structural defects were produced in the carbonaceous matrix of the materials, causing the fragmentation of g-C3N4 and an increase of surface area. The catalytic activities of these composites were evaluated in reactions of peroxymonosulfate activation for the degradation of paracetamol. Among these materials, the composite 20IWCN showed the best catalytic activity, being able to degrade almost 90 % of the total paracetamol in only 20 min of reaction. This catalyst also demonstrated high chemical stability, being successfully utilized in five consecutive reaction cycles, with negligible iron leaching.

Keywords: iron mining; mining waste; graphitic carbon; carbon nitride; iron

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.