LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An ultrasensitive platform for PCB77 detection: New strategy for liquid crystal-based aptasensor fabrication.

Photo from wikipedia

Polychlorinated biphenyls (PCBs) are considered persistent bio-accumulative toxicants which threats global food safety and environmental health. Traditional analytical techniques for detection of PCBs are time-consuming and they do not satisfy… Click to show full abstract

Polychlorinated biphenyls (PCBs) are considered persistent bio-accumulative toxicants which threats global food safety and environmental health. Traditional analytical techniques for detection of PCBs are time-consuming and they do not satisfy urgent need for rapid and accurate monitoring of these persistent pollutants. Biosensor technology may be promising in this respect. Here we demonstrate a novel liquid crystal (LC)-based aptasensing platform as a promising label-free and rapid biosensor for PCB77 detection. This novel molecular strategy utilize triple-helix molecular conformational switch which is mediated formation of duplex on sensing platform in presence of target. Duplex forming leads to optical change from dark to bright in a liquid crystal based aptasensor. The limit of quantification of the LC-aptasensor to PCB77 is 1.5 × 10-5 μg/L with comparable selectivity. Besides, we also demonstrated that this system is able to detect PCB77 in tap water, environmental water and milk. This strategy has potential for label-free and portable detection of different targets without any aptamer sequence length restrictions.

Keywords: pcb77; liquid crystal; detection; crystal based

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.