LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of atmospheric aging processes on in vitro induced oxidative stress and chemical composition of biomass burning aerosols.

Photo from wikipedia

Biomass burning (BB) has an important impact on local/regional air quality and human health in China, but most previous studies overlooked the influence of atmospheric aging processes on cytotoxicity and… Click to show full abstract

Biomass burning (BB) has an important impact on local/regional air quality and human health in China, but most previous studies overlooked the influence of atmospheric aging processes on cytotoxicity and chemical composition of BB aerosols. In this study, we combined a combustion chamber and an oxidation flow reactor to generate fresh and aged BB PM2.5. Human bronchial epithelial BEAS-2B cells were exposed to PM2.5 preparation for 24 h, and then determined for particle-induced reactive oxygen species (ROS) in vitro. The particle-induced ROS production increased by 11 %-64 % after two days of aging, suggesting an enhancement of in vitro-induced oxidative stress (OS) of aged BB particles. Chemical analysis showed that organic matter (OM) was the dominant component with no changes in relative abundance for the fresh and aged BB particles. Organic polycyclic aromatic compounds and some metals showed strong correlations with ROS in fresh particles, indicating the important effects of these harmful components on the OS of fresh BB aerosols. However, such correlations were not found for the aged particles, which is possibly related to the loss of non- or low-toxic semivolatile compounds and the formation of secondary harmful OM (such as some N-containing organic compounds) during the atmospheric aging processes.

Keywords: biomass burning; vitro induced; aging processes; induced oxidative; chemical composition; atmospheric aging

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.