LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Selective leaching of copper and zinc from primary ores and secondary mineral residues using biogenic ammonia.

Photo from wikipedia

With the number of easily accessible ores depleting, alternate primary and secondary sources are required to meet the increasing demand of economically important metals. Whilst highly abundant, these materials are… Click to show full abstract

With the number of easily accessible ores depleting, alternate primary and secondary sources are required to meet the increasing demand of economically important metals. Whilst highly abundant, these materials are of lower grade with respect to traditional ores, thus highly selective and sustainable metal extraction technologies are needed to reduce processing costs. Here, we investigated the metal leaching potential of biogenic ammonia produced by a ureolytic strain of Lysinibacillus sphaericus on eight primary and secondary materials, comprised of mining and metallurgical residues, sludges and automotive shredder residues (ASR). For the majority of materials, moderate to high yields (30-70%) and very high selectivity (>97% against iron) of copper and zinc were obtained with 1 mol L-1 total ammonia. Optimal leaching was achieved and further refined for the ASR in a two-step indirect leaching system with biogenic ammonia. Copper leaching was the result of local corrosion and differences in leaching against the synthetic (NH4)2CO3 control could be accounted for by pH shifts from microbial metabolism, subsequently altering free NH3 required for coordination. These results provide important findings for future sustainable metal recovery technologies from secondary materials.

Keywords: selective leaching; copper zinc; ammonia; biogenic ammonia

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.