LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways.

Photo by osheen_ from unsplash

Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic derivatives are organic pollutants that pose a serious health risk to human beings. In this study, a newly isolated Pseudomonas brassicacearum strain MPDS could… Click to show full abstract

Polycyclic aromatic hydrocarbons (PAHs) and heterocyclic derivatives are organic pollutants that pose a serious health risk to human beings. In this study, a newly isolated Pseudomonas brassicacearum strain MPDS could effectively degrade PAHs and heterocyclic derivatives, including naphthalene, fluorene, dibenzofuran (DBF) and dibenzothiophene (DBT). Notably, strain MPDS is able to degrade fluorene, DBF and DBT uniquely via a lateral dioxygenation pathway, while most reported strains degrade fluorene, DBF and DBT via an angular dioxygenation pathway or co-metabolize them via a lateral dioxygenation pathway. Strain MPDS completely degraded 50 mg naphthalene (in 50 mL medium) in 84 h, and OD600 reached 1.0-1.1; while, it stabilized at OD600 0.5-0.6 with 5 mg fluorene or DBF or DBT. Meanwhile, 65.7% DBF and 32.1% DBT were degraded in 96 h, and 40.3% fluorene was degraded in 72 h, respectively. Through genomic and transcriptomic analyses, and comparative genomic analysis with another DBF degradation strain, relevant gene clusters were predicted, and a naphthalene-degrading gene cluster was identified. This study provides understanding of degradation of PAHs and their heterocyclic derivatives, as well as new insights into the lateral dioxygenation pathway of relevant contaminants.

Keywords: via lateral; lateral dioxygenation; pahs heterocyclic; heterocyclic derivatives; strain; dioxygenation

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.