LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Distinct effects of hypochlorite types on the reduction of antibiotic resistance genes during waste activated sludge fermentation: Insights of bacterial community, cellular activity, and genetic expression.

Photo from wikipedia

The effectiveness of hypochlorites (NaClO and Ca(ClO)2) on the reduction of antibiotic resistance genes (ARGs) during waste activated sludge (WAS) fermentation was determined by the quantitative PCR. NaClO and Ca(ClO)2… Click to show full abstract

The effectiveness of hypochlorites (NaClO and Ca(ClO)2) on the reduction of antibiotic resistance genes (ARGs) during waste activated sludge (WAS) fermentation was determined by the quantitative PCR. NaClO and Ca(ClO)2 exhibited distinct effects on ARGs fates. Ca(ClO)2 was effective in removing all investigated ARGs, and the efficiency was highly dose-dependent. Unexpectedly, the NaClO treatment attenuated ARGs with lower efficiency and even caused the propagation of certain ARGs (i.e., aadA1 and tetQ) at higher doses. The extracellular polymeric substances dissolution and membrane integrity suggested that unstable NaClO had acute effects on bacteria initially, while it was ineffective to further attenuate ARGs released from hosts due to the rapid consumption of oxidative ClO-. Without lasting and strong oxidative stress, the microbial activities of tolerant ARGs hosts will partially recover and then contribute to the ARGs dissemination across genera. In contrast, solid-state Ca(ClO)2 was slowly released and exhibited prolonged effects on bacteria by disrupting cell membranes and removing the susceptible ARGs released from hosts. Furthermore, bacterial taxa-ARG network analysis indicated that Ca(ClO)2 reduced the abundance of potential hosts, and the metabolic pathway and gene expression related to ARGs propagation were significantly downregulated by Ca(ClO)2, which contributed to efficient ARGs attenuation.

Keywords: activated sludge; antibiotic resistance; waste activated; reduction antibiotic; resistance genes; clo

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.