LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In situ growth of TiO2 nanoparticles on nitrogen-doped Ti3C2 with isopropyl amine toward enhanced photocatalytic activity.

Photo from wikipedia

Construction of heterojunction and nitrogen doping is an effective approach for synthesizing photocatalysts with high quantum yield and efficient electron-hole separation. 2D MXene Ti3C2 has been considered a good carbonaceous… Click to show full abstract

Construction of heterojunction and nitrogen doping is an effective approach for synthesizing photocatalysts with high quantum yield and efficient electron-hole separation. 2D MXene Ti3C2 has been considered a good carbonaceous nanomaterial for designing heterojunction, while the original surface groups and stacked structure limit the electron-hole separation. Herein, a hybrid of nitrogen-doped Ti3C2 nanosheets and TiO2 nanoparticles (NPs) composed of TiO2 NPs in situ growing on isopropyl amine (iPA) modified Ti3C2 (iN-Ti3C2) was developed for the first time. The novel iN-Ti3C2/TiO2 hybrid exhibited an excellent ultraviolet-light photodegradation of methylene blue (MB), with a degradation rate (0.02642 min-1) significantly higher than that of pure TiO2 NPs, bulk-Ti3C2/TiO2, dimethyl sulfoxide modified Ti3C2/TiO2 hybrid, and hydrazine monohydrate modified Ti3C2/TiO2 hybrid. The formation of heterojunction between iN-Ti3C2 and TiO2 and its role in the photocatalysis were systematically analyzed using various characterization techniques and density functional theory calculation. The iPA modification exfoliated Ti3C2 and doped N on Ti3C2 nanosheets; the in situ grown TiO2 NPs formed efficient heterojunctions with the nanosheets; the N-doping facilitated electron migration in Ti3C2 and inhibited the recombination of photogenerated electron-hole pairs; •OH dominated the photodegradation of MB. This work provides a new approach of constructing efficient photocatalysts for the treatment of organics-polluted water.

Keywords: nitrogen doped; ti3c2 tio2; doped ti3c2; ti3c2; tio2 nanoparticles

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.