LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Hydrogeochemical and health risk evaluation of arsenic in shallow and deep aquifers along the different floodplains of Punjab, Pakistan.

Photo from wikipedia

The current study delineated the distribution, (hydro)geochemical behavior and health risk of arsenic (As) in shallow (depth < 35 m; handpumps and electric pumps) and deep (depth > 35 m; tube wells)… Click to show full abstract

The current study delineated the distribution, (hydro)geochemical behavior and health risk of arsenic (As) in shallow (depth < 35 m; handpumps and electric pumps) and deep (depth > 35 m; tube wells) aquifers in five areas along the Indus River (Bhakar, Kallur Kot), Jhelum River (Jhelum) and Chenab River (Hafizabad, Gujranwala) floodplains of Punjab, Pakistan. Relatively, greater As concentration was observed in deep wells (mean: 24.3 µg L-1) compared to shallow wells (19.4 µg L-1), with groundwater As spanning 0.1-121.7 µg L-1 (n = 133) in three floodplains. Groundwater from Hafizabad (Chenab River floodplain) possessed the highest As (121.7 µg L-1), Na+ (180 mg L-1), Ca2+ (95 mg L-1), Cl- (101 mg L-1) and SO42- (1353 mg L-1) concentrations. Arsenic health risk modeling indicated the potential carcinogenic (value > 10-4) and non-carcinogenic (hazard quotient > 1.0) risks for groundwater of all areas, with the utmost risk estimated for Chenab floodplain and deep aquifers. Positive saturation index values for Fe oxide mineral phases may suggest their potential role in As mobilization/release in these aquifer environments. This study provides critically-important and baseline knowledge for a widespread groundwater As examination along these three floodplains, which is vital for launching suitable As mitigation and remediation programs to reduce the potential health risk.

Keywords: punjab pakistan; health risk; floodplains punjab; arsenic shallow; risk

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.