LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Arsenic behavior in groundwater in Hanoi (Vietnam) influenced by a complex biogeochemical network of iron, methane, and sulfur cycling.

Photo from wikipedia

The fate of arsenic (As) in groundwater is determined by multiple interrelated microbial and abiotic processes that contribute to As (im)mobilization. Most studies to date have investigated individual processes related… Click to show full abstract

The fate of arsenic (As) in groundwater is determined by multiple interrelated microbial and abiotic processes that contribute to As (im)mobilization. Most studies to date have investigated individual processes related to As (im)mobilization rather than the complex networks present in situ. In this study, we used RNA-based microbial community analysis in combination with groundwater hydrogeochemical measurements to elucidate the behavior of As along a 2 km transect near Hanoi, Vietnam. The transect stretches from the riverbank across a strongly reducing and As-contaminated Holocene aquifer, followed by a redox transition zone (RTZ) and a Pleistocene aquifer, at which As concentrations are low. Our analyses revealed fermentation and methanogenesis as important processes providing electron donors, fueling the microbially mediated reductive dissolution of As-bearing Fe(III) minerals and ultimately promoting As mobilization. As a consequence of high CH4 concentrations, methanotrophs thrive across the Holocene aquifer and the redox transition zone. Finally, our results underline the role of SO42--reducing and putative Fe(II)-/As(III)-oxidizing bacteria as a sink for As, particularly at the RTZ. Overall, our results suggest that a complex network of microbial and biogeochemical processes has to be considered to better understand the biogeochemical behavior of As in groundwater.

Keywords: arsenic behavior; groundwater; network; hanoi vietnam; behavior groundwater

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.