LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Recent progress in the detection of emerging contaminants PFASs.

As an emerging contaminant, per- and polyfluoroalkyl substances (PFASs) make up a large group of persistent anthropogenic chemicals, which are difficult to degrade in the environment. Notwithstanding their wide range… Click to show full abstract

As an emerging contaminant, per- and polyfluoroalkyl substances (PFASs) make up a large group of persistent anthropogenic chemicals, which are difficult to degrade in the environment. Notwithstanding their wide range of applications in consumer products and industrial processes, PFASs have been detected in the environment as well as in human body. Due to their potential adverse human health effects, the U.S. Environmental Protection Agency (EPA) set the combined concentration of PFOA and PFOS in drinking water at 70 ng/L or 70 ppt (parts per trillion) as a lifetime health advisory level. Current standard detection methods for PFASs heavily rely on chromatographic techniques coupled with mass spectrometry. Although these methods provide accurate, specific, and sensitive measurements, their applications are greatly limited in advanced analytical laboratories because it necessitates expensive instrumentations, professional operators, complicated sample pretreatment, and considerable analysis time. Therefore, other detection methods beyond chromatographic based techniques, such as optical and electrochemical techniques, have also been extensively explored for simple, accessible, inexpensive, rapid, and sensitive detection of PFASs, particularly PFOA and PFOS. The purpose of this review is to provide recent progress in alternative detection platforms relying on non-MS based techniques for PFASs analysis. Starting with a brief introduction about the importance of monitoring PFASs, recent advances in various PFASs detection methods are grouped and discussed based on the difference of signals, with an emphasis on the working principles of different techniques, the sensing mechanism, and the sensing performance. The review is closed with the conclusion and discussion of future trends.

Keywords: detection; detection methods; pfass; pfass recent; recent progress

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.