LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Transfer learning driven sequential forecasting and ventilation control of PM2.5 associated health risk levels in underground public facilities.

Photo from wikipedia

Particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has become a major public concern in closed indoor environments, such as subway stations. Forecasting platform PM2.5 concentrations is significant in… Click to show full abstract

Particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has become a major public concern in closed indoor environments, such as subway stations. Forecasting platform PM2.5 concentrations is significant in developing early warning systems, and regulating ventilation systems to ensure commuter health. However, the performance of existing forecasting approaches relies on a considerable amount of historical sensor data, which is usually not available in practical situations due to hostile monitoring environments or newly installed equipment. Transfer learning (TL) provides a solution to the scant data problem, as it leverages the knowledge learned from well-measured subway stations to facilitate predictions on others. This paper presents a TL-based residual neural network framework for sequential forecast of health risk levels traced by subway platform PM2.5 levels. Experiments are conducted to investigate the potential of the proposed methodology under different data availability scenarios. The TL-framework outperforms the RNN structures with a determination coefficient (R2) improvement of 42.84%, and in comparison, to stand-alone models the prediction errors (RMSE) are reduced up to 40%. Additionally, the forecasted data by TL-framework under limited data scenario allowed the ventilation system to maintain IAQ at healthy levels, and reduced PM2.5 concentrations by 29.21% as compared to stand-alone network.

Keywords: risk levels; transfer learning; ventilation; health risk; health; forecasting

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.