LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Mesoporous MCM-41 derived from natural Opoka and its application for organic vapors removal.

Photo from wikipedia

Mesoporous silica MCM-41 was synthesized by a facile hydrothermal treatment using sodium silicate extracted from natural Opoka as the Si source. The dynamic adsorption and desorption of organic vapors mixture… Click to show full abstract

Mesoporous silica MCM-41 was synthesized by a facile hydrothermal treatment using sodium silicate extracted from natural Opoka as the Si source. The dynamic adsorption and desorption of organic vapors mixture on the MCM-41 were investigated. Characterization of the textural properties of the samples showed that the sample synthesized with a molar ratio of CTAB/Si = 0.16 possessed the largest specific surface area (988 m2/g) and pore volume (1.02 cm3/g), also uniform pore size distribution centered at 2.8 nm. The adsorption capacity of this sample for organic vapors mixture improved remarkably over raw Opoka and reached 158.5 mg/g at 20 ℃, which is comparable to that of commercial activated carbon. The reusability of the adsorbent was tested by 5 adsorption and regeneration cycles. Obtained results demonstrate that the MCM-41 adsorbent can be easily regenerated by thermal desorption in air, and the cumulative heel on the adsorbent can be markedly reduced by increasing the desorption temperature, making it a promising adsorbent for VOCs abatement.

Keywords: mcm derived; organic vapors; derived natural; natural opoka; opoka application; mesoporous mcm

Journal Title: Journal of hazardous materials
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.