LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Efficient removal of Co(II) and Sr(II) from aqueous solution using polyvinyl alcohol/graphene oxide/MnO2 composite as a novel adsorbent.

Photo from wikipedia

In this study, a novel adsorbent, polyvinyl alcohol/graphene oxide/MnO2 composite was prepared, characterized and used for efficient removal of Co2+ and Sr2+ from aqueous solution. Polyvinyl alcohol (PVA) and Mn2+… Click to show full abstract

In this study, a novel adsorbent, polyvinyl alcohol/graphene oxide/MnO2 composite was prepared, characterized and used for efficient removal of Co2+ and Sr2+ from aqueous solution. Polyvinyl alcohol (PVA) and Mn2+ played a synergistic role in the gelation of PVA/GO/Mn2+, while Mn2+ can be further converted into oxide to achieve functionalized aerogel (PVA/GO/MnO2). The spectroscopy analysis manifested that hydrogen bonds and electrostatic attraction were responsible for the formation of PVA/GO/MnO2. The functionalization of MnO2 enhanced the adsorption capacity for Co2+ (2.1 folds) and Sr2+ (1.3 folds) by PVA/GO/MnO2. The composite showed high adsorption capacity at broad pH range of 4.0-9.0. For competitive adsorption test, Ni2+/Zn2+ exerted the most interfering effect on Co2+ adsorption, while Mg2+/Ca2+ showed severe interfering effect on Sr2+ adsorption. Both electrostatic attraction and oxygen-containing groups contributed to the adsorption mechanism. This study may provide a new adsorbent for separation of Co2+ and Sr2+ from aqueous solution.

Keywords: adsorption; polyvinyl alcohol; aqueous solution; mno2 composite

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.