LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Robotic arm material characterisation using LIBS and Raman in a nuclear hot cell decommissioning environment.

Photo from wikipedia

Material characterisation in nuclear environments is an essential part of decommissioning processes. This paper explores the feasibility of deploying commercial off the shelf (COTS) laser induced breakdown spectroscopy (LIBS) and… Click to show full abstract

Material characterisation in nuclear environments is an essential part of decommissioning processes. This paper explores the feasibility of deploying commercial off the shelf (COTS) laser induced breakdown spectroscopy (LIBS) and Raman spectroscopy, for use in a decommissioning hot cell environment, to inform waste operation decision making. To operate these techniques, adapters and probes were designed and constructed, for each instrument, to form tools that a robotic arm could pick up and operate remotely from an isolated control room. The developed instrumentation successfully returned live measurement data to a control room for saving and further analysis (e.g. material classification/identification). Successful testing of the solutions was performed for contact LIBS, contact Raman and stand-off Raman on a PaR M3000 robotic arm, in a simulated hot cell environment and the limitations identified. Data obtained by the techniques are analysed, classified and presented in a 3D virtual environment. The spectral data collected by a basic COTS LIBS showed potential for use in contamination identification (beryllium is used as example). Potential for COTS, LIBS and Raman in decommissioning is established and improvements to the hardware, the measurement processes and how the data is stored and used, are identified.

Keywords: robotic arm; hot cell; libs raman; spectroscopy; environment

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.