Light driven photothermal catalysis has been carried out by converting the light energy into heat to reach the light-off temperature of the reaction. Herein we have synthesized the ternary multifunctional… Click to show full abstract
Light driven photothermal catalysis has been carried out by converting the light energy into heat to reach the light-off temperature of the reaction. Herein we have synthesized the ternary multifunctional catalysts of polymeric carbon nitride coupled with Pt-embedded transition metal oxide (Pt-Cox/CN), for the catalytic degradation of toluene. Under the condition of space velocity of 30,000 mL/(gh) and concentration of 210 ppm, toluene conversion and CO2 mineralization can reach 90% and 83% over Pt-Co20/CN, respectively. The introduction of an appropriate proportion of CoO enhances the light absorption of nanocomposites and improves the adsorption for toluene. Meanwhile, CoO promotes the proportion and mobility of adsorbed oxygen on the surface, which are conducive to the catalytic oxidation reaction according to the Mars-van Krevelen mechanism. The results also suggest that light irradiation serves as a source of heat to initiate photo-induced chemical reactions and promote photothermal catalytic oxidation by promoting the activation of lattice oxygen.
               
Click one of the above tabs to view related content.