LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Treatment of pharmaceutical wastewater by ionizing radiation: Removal of antibiotics, antimicrobial resistance genes and antimicrobial activity.

Photo from wikipedia

In present study, the treatment of real pharmaceutical wastewater from an erythromycin (ERY) production factory by gamma irradiation was investigated. Results showed that a variety of antimicrobial resistance genes (ARGs),… Click to show full abstract

In present study, the treatment of real pharmaceutical wastewater from an erythromycin (ERY) production factory by gamma irradiation was investigated. Results showed that a variety of antimicrobial resistance genes (ARGs), involving MLSB, tet, bla, multidrug, sul, MGEs and van genes and plentiful 9 bacterial phyla were identified in the raw wastewater. In addition to ERY, sulfamethoxazole (SMX) and tetracycline (TC) were also identified with the concentration of 3 order of magnitude lower than ERY. Results showed that the abatement of ARGs and antibiotics was much higher than that of antimicrobial activity and COD. With the absorbed dose of 50 kGy, the removal percentage of ARGs, ERY, antimicrobial activity and COD was 96.5-99.8%, 90.0%, 47.8% and 10.3%, respectively. The culturable bacteria were abated fast and completely at 5.0 kGy during gamma irradiation. The genus Pseudomonas was predominant in raw wastewater (56.7%) and its relative abundance decreased after gamma irradiation, to 1.3% at 50 kGy. With addition of peroxymonosulfate (PMS, 50 mM), the antimicrobial activity disappeared completely and ERY removal reached as high as 99.2% at the lower absorbed dose of 25 kGy. Ionizing radiation-coupled technique is a potential option to treat pharmaceutical wastewater for reduction of antibiotics, ARGs and antimicrobial activity.

Keywords: wastewater; pharmaceutical wastewater; antimicrobial activity; resistance genes; antimicrobial resistance

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.