LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

O2-enriched microbial activity with pH-sensitive solvo-chemical and electro-chlorination strategy to reclaim critical metals from the hazardous waste printed circuit boards.

Photo by dwoodhouse from unsplash

An innovative process integration for the sustainable recovery of critical metals from waste printed circuit boards (WPCBs) is demonstrated. In the acid pre-treatment of WPCBs, > 95% of highly toxic metals… Click to show full abstract

An innovative process integration for the sustainable recovery of critical metals from waste printed circuit boards (WPCBs) is demonstrated. In the acid pre-treatment of WPCBs, > 95% of highly toxic metals lead and tin could dissolve after 240 min of contact in 4.0 mol L-1 HNO3. Thereafter, the microbial activity of Sulfobacillus thermosulfidooxidans (strain RDB) under intense aeration is found favorable for base metals' liberation. ~92% copper, 89% nickel, and 93% zinc get extracted at the optimal condition of O2-mixed-aeration, 30%; pulp density, 10 g L-1; aeration rate, 0.5 L min-1; sulfur dosage, 2%; temperature, 45 °C; and duration, 21 days. Quantitative separation of base metals is achieved using ketoxime as a function of equilibrium pH that yielding pH0.5 order: Cu (1.45) < Ni (5.7) < Zn (8.1). The residual gold from WPCBs is uniquely leached (~99% efficiency) in brine solution (2.0 mol L-1 NaCl) under the electro-chlorination rate, 0.62 mmol min-1; dissolution pH, 1.0; pulp density, 20 g L-1; temperature, 30 °C; and time, 60 min. Subsequently, gold from brine solution is solvated with tri-butyl-phosphate at pHeq, ≤ 0.5, forming [2(RP=O)·HAuCl4·H2O]¯ complex in the organic phase. Finally, > 99% of high-purity gold is stripped from loaded organic while contacting ammoniacal thiosulfate solution in two-stages of counter-current flow.

Keywords: waste printed; circuit boards; electro chlorination; printed circuit; microbial activity; critical metals

Journal Title: Journal of hazardous materials
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.