The increasing input of fungicides has emerged as a global concern for agroecosystem stability and sustainability. Agroecosystem resilience has been linked to microbiome response, however, is not well understood. Focusing… Click to show full abstract
The increasing input of fungicides has emerged as a global concern for agroecosystem stability and sustainability. Agroecosystem resilience has been linked to microbiome response, however, is not well understood. Focusing on a widespread triazole-class fungicide triadimefon in the paddy ecosystem, we characterized that the soils and sediments were dominant triadimefon reservoirs with the peak level at 195 μg kg-1 and 31.3 μg kg-1, respectively, but essential for the resilience of paddy ecosystem to triadimefon. In paddy simulation models, the half-life of triadimefon in soil-sediment was 8.4-28.9 days, while it was prolonged to 86.6-115.5 days after elimination of resident microbial community. Phospholipid fatty acid profiling and high-throughput sequencing showed that the distinctive bacterial community responses contributed to variable degradation of triadimefon in paddy soils and sediments. Sphingomonas and Xanthomonas were identified as positive responders of the keystone taxa in the responsive bacteriome, whereas Enterobacter were negative responders that declined over time. Synthetic assemblages combined with quantitative polymerase chain reaction further validated that Sphingomonas and Xanthomonas were involved in sustaining soil-sediment resilience to triadimefon contamination. Collectively, our results revealed that the shaping of soil and sediment bacteriomes was responsible for the resilience of the paddy agroecosystem to fungicide contamination.
               
Click one of the above tabs to view related content.